15,328 research outputs found

    On the inward drift of runaway electrons during the plateau phase of runaway current

    Full text link
    The well observed inward drift of current carrying runaway electrons during runaway plateau regime after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by taking the variation of canonical angular momentum. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau regime.Comment: 25 pages, 9 figures, submitted to Physics of Plasma

    One-dimensional kinetic description of nonlinear traveling-pulse (soliton) and traveling-wave disturbances in long coasting charged particle beams

    Full text link
    This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius rwr_{w}. The average axial electric field is expressed as ⟨Ez⟩=βˆ’(βˆ‚/βˆ‚z)βŸ¨Ο•βŸ©=βˆ’ebg0βˆ‚Ξ»b/βˆ‚zβˆ’ebg2rw2βˆ‚3Ξ»b/βˆ‚z3\langle E_{z}\rangle=-(\partial/\partial z)\langle\phi\rangle=-e_{b}g_{0}\partial\lambda_{b}/\partial z-e_{b}g_{2}r_{w}^{2}\partial^{3}\lambda_{b}/\partial z^{3}, where g0g_{0} and g2g_{2} are constant geometric factors, Ξ»b(z,t)=∫dpzFb(z,pz,t)\lambda_{b}(z,t)=\int dp_{z}F_{b}(z,p_{z},t) is the line density of beam particles, and Fb(z,pz,t)F_{b}(z,p_{z},t) satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (solitons) solutions with time-stationary waveform are examined for a wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (a) the nonlinear waterbag distribution, where Fb=const.F_{b}=const. in a bounded region of pzp_{z}-space; and (b) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field ⟨Ez⟩\langle E_{z}\rangle. .Comment: 42 pages, 17 figure
    • …
    corecore